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Statistical mechanics of lossy data compression using a nonmonotonic perceptron
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The performance of a lossy data compression scheme for uniformly biased Boolean messages is investigated
via methods of statistical mechanics. Inspired by a formal similarity to the storage capacity problem in neural
network research, we utilize a perceptron of which the transfer function is appropriately designed in order to
compress and decode the messages. Employing the replica method, we analytically show that our scheme can
achieve the optimal performance known in the framework of lossy compression in most cases when the code
length becomes infinite. The validity of the obtained results is numerically confirmed.
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I. INTRODUCTION

Recent active research on error-correcting codes~ECC!
has revealed a great similarity between information the
~IT! and statistical mechanics~SM! @1–7#. As some of these
studies have shown that methods from SM can be usefu
IT, it is natural to expect that a similar approach may a
bring about novel developments in fields other than ECC

The purpose of the present paper is to offer such an
ample. More specifically, we herein employ methods fro
SM to analyze and develop a scheme of data compress
Data compression is generally classified into two categor
lossless and lossy compression@8#. The purpose of lossles
compression is to reduce the size of messages in informa
representation under the constraint of perfect retrieval.
message length in the framework of lossy compression
be further reduced by allowing a certain amount of distort
when the original expression is retrieved.

The possibility of lossless compression was first poin
out by Shannon in 1948 in thesource coding theorem@9#,
whereas the counterpart of lossy compression, termed a
rate-distortion theorem, was presented in another paper
Shannon more than 10 years later@10#. Both of these theo-
rems provide the best possible compression performanc
each framework. However, their proofs are not construc
and suggest few clues for how to design practical cod
After much effort had been made for achieving the optim
performance in practical time scales, a practical loss
compression code that asymptotically saturates the sou
coding limit was discovered@11#. Nevertheless, thus far, re
garding lossy compression, no algorithm that can be p
formed in a practical time scale saturating the optim
performance predicted by the rate-distortion theory has b
found, even for simple information sources. Therefore,
quest for better lossy compression codes remains one o
important problems in IT@8,12–14#.

*Electronic address: hosaka@sp.dis.titech.ac.jp
†Electronic address: kaba@dis.titech.ac.jp
‡Electronic address: nishi@stat.phys.titech.ac.jp
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Therefore, we focus on designing an efficient lossy co
pression code for a simple information source of uniform
biased Boolean sequences. Constructing a scheme of
compression requires implementation of a map from co
pressed data, of which the redundancy should be minim
to the original message that is somewhat biased, and th
fore seems redundant. However, since the summation
the Boolean field generally reduces the statistical bias of
data, constructing such a map for the aforementioned
pose by only linear operations is difficult, although the b
performance can be achieved by such linear maps in the
of ECC @1,2,4,5,7# and lossless compression@15#. In con-
trast, producing a biased output from an unbiased inpu
relatively easy when a nonlinear map is used. Therefore,
will employ a perceptron, of which the transfer function
optimally designed in order to devise a lossy compress
scheme.

The present paper is organized as follows. In the follo
ing section, we briefly introduce the framework of lossy da
compression, providing the optimal compression perf
mance that is often expressed as therate-distortion function
in the case of the uniformly biased Boolean sequences
Sec. III, we explain how to employ a nonmonotonic perce
tron to compress and decode a given message. The ab
and limitations of the proposed scheme are examined u
the replica method in Sec. IV. Due to a specific~mirror!
symmetry that we impose on the transfer function of t
perceptron, one cananalytically show that the proposed
method can saturate the rate-distortion function for m
choices of parameters when the code length becomes infi
The obtained results are numerically validated by means
the extrapolation on data from systems of finite size in S
V. The final section is devoted to summary and discussio

II. LOSSY DATA COMPRESSION

Let us first provide the framework of lossy data compre
sion. In a general scenario, a redundant original messag
M random variables,y5(y1,y2, . . . ,yM), which we assume
here as a Boolean sequenceymP$0,1%, is compressed into a
shorter ~Boolean! expression s5(s1 ,s2 , . . . ,sN)(si
©2002 The American Physical Society26-1
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HOSAKA, KABASHIMA, AND NISHIMORI PHYSICAL REVIEW E 66, 066126 ~2002!
P$0,1%,N,M ). In the decoding phase, the compressed
pression s is mapped to a representative messageỹ
5( ỹ1,ỹ2, . . . ,ỹM)( ỹmP$0,1%) in order to retrieve the origi-
nal expression~Fig. 1!.

In the source-coding theorem, it is shown that perfect
trieval ỹ5y is possible if the compression rateR5N/M is
greater than the entropy per bit of the messagey when the
message lengthsM and N become infinite. On the othe
hand, in the framework of lossy data compression,
achievable compression rate can be further reduced, allow
a certain amount of distortion between the original and r
resentative messagesy and ỹ.

A measure to evaluate the distortion is termed as thedis-

tortion function, which is denoted asd(y,ỹ)>0. Here, we
employ the Hamming distance

d~y,ỹ!5 (
m51

M

d~ym,ỹm!, ~1!

where

d~ym,ỹm!5H 0 if ym5 ỹm

1 if ymÞ ỹm,
~2!

as is frequently used for Boolean messages.
Since the original messagey is assumed to be generate

randomly, it is natural to evaluate the average of Eq.~1!. This
can be performed by averagingd(y,ỹ) with respect to the
joint probability of y and ỹ as

d~y,ỹ!5(
y

(
ỹ

P~y,ỹ!d~y,ỹ!. ~3!

By allowing the average distortion per bit,d(y,ỹ)/M , up
to a given permissible error level 0<D<1, the achievable
compression rate can be reduced below the entropy per
This limit R(D) is termed therate-distortion function, which
provides the optimal compression performance in the fra
work of lossy compression.

The rate-distortion function is formally obtained as a s
lution of a minimization problem with respect to the mutu
information betweeny and ỹ @8#. Unfortunately, solving the
problem is generally difficult and analytical expressions
R(D) are not known in most cases.

The uniformly biased Boolean message in which ea
component is generated independently from an identical
tribution P(ym51)512P(ym50)5p is one of the excep-
tional models for whichR(D) can be analytically obtained
For this simple source, the rate-distortion function becom

FIG. 1. Encoder and decoder in the framework of lossy co

pression. The retrieved sequenceỹ need not be identical to the origi
nal sequencey.
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R~D !5H2~p!2H2~D !, ~4!

whereH2(x)52x log2x2(12x)log2(12x).
However, it should be addressed here that a practical c

that saturates this limit has not yet been reported, even
this simplest model. Therefore, in the following, we focus
this information source and look for a code that saturates
~4! examining properties required for good compression p
formance.

III. COMPRESSION BY PERCEPTRON

In a good compression code for the uniformly bias
source, it is conjectured that compressed expressions
should have the following properties:

~I! In order to minimize loss of information in the origina
expressions, the entropy per bit ins must be maximized. This
implies that the components ofs are preferably unbiased an
uncorrelated.

~II ! In order to reduce the distortion, the representat
messageỹ(s) should be placed close to the typical sequen
of the original messages that are biased.

Unfortunately, it is difficult to construct a code that sati
fies both of the above two requirements utilizing only line
transformations over the Boolean field while such maps p
vide the optimal performance in the case of ECC@1,2,4,5,7#
and lossless compression@15#. This is because a linear trans
formation generally reduces statistical bias in messag
which implies that requirement~II ! cannot be realized for
unbiased and uncorrelated compressed expressionss that are
preferred in requirement~I!.

One possible method to design a code that has the ab
properties is to introduce a nonlinear transformation. A p
ceptron provides one of the simplest schemes for carry
out this task.

In order to simplify notations, let us replace all the Boo
ean expressions$0,1% with binary ones$1,21%. By this, we
can construct a nonlinear map from the compressed mes
s to the retrieved sequenceỹ utilizing a perceptron as

ỹm5 f S 1

AN
s•xmD ~m51,2, . . . ,M !, ~5!

where xm51,2, . . . ,M are fixed N-dimensional vectors to
specify the map andf (•) is a transfer function from a rea
number to a binary variableỹmP$1,21% that should be op-
timally designed.

Since each component of the original messagey is pro-
duced independently, it is preferred to minimize the corre
tions among components of a representative vectorỹ, which
intuitively indicates that random selection ofxm may provide
a good performance. Therefore, we hereafter assu
that vectors xm51,2, . . . ,M are independently drawn
from the N-dimensional normal distribution P(x)
5(2p)2N/2exp@2uxu2/2#.

Based on the nonlinear map~5!, a lossy compression
scheme can be defined as follows:

-

6-2
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STATISTICAL MECHANICS OF LOSSY DATA . . . PHYSICAL REVIEW E66, 066126 ~2002!
~1! Compression. For a given messagey, find a vectors

that minimizes the distortiond(y,ỹ(s)), where ỹ(s) is the
representative vector that is generated froms by Eq.~5!. The
obtaineds is the compressed message.

~2! Decoding. Given the compressed messages, the rep-

resentative vectorỹ(s) produced by Eq.~5! provides the ap-
proximate message for the original message.

Here, we should notice that the formulation of the curre
problem has become somewhat similar to that for the stor
capacity evaluation of the Ising perceptron@16,17# regarding
s, xm, andym as ‘‘Ising couplings,’’ ‘‘random input pattern,’’
and ‘‘random output,’’ respectively. Actually, the rate
distortion limit in the current framework forD50 and p
51/2 can be calculated as the inverse of the storage cap
of the Ising perceptron,ac

21 .
This observation implies that the simplest choice of

transfer functionf (u)5sgn(u), where sgn(u)51 for u>0
and21 otherwise, does not saturate the rate-distortion fu
tion ~4!. This is because the well-known storage capacity
the simple Ising perceptron,ac5M /N'0.83, means that the
‘‘compression limit’’ achievable by this monotonic transf
function becomesRc5N/M5ac

21'1.20 and far from the
value provided by Eq.~4! for this parameter choiceR(D
50)5H2(p51/2)2H2(D50)51. We also examined the
performances obtained by the monotonic transfer func
for biased messages 0,p,1/2 by introducing an adaptive
threshold in our previous study@18# and found that the dis
crepancy from the rate-distortion function becomes large
particular for relatively highR, while fairly good perfor-
mance is observed for low rate regions.

Therefore, we have to design a nontrivial functionf (•) in
order to achieve the rate-distortion limit, which may see
hopeless as there are infinitely many degrees of freedom
be tuned. However, a useful clue exists in the literature
perceptrons, which have been investigated extensively
ing the last decade.

In the study of neural network, it is widely known tha
employing a nonmonotonic transfer function can highly
crease the storage capacity of perceptrons@19#. In particular,
Bex et al. reported that the capacity of the Ising perceptr
that has a transfer function of the reversed-wedge-t
f (u)5 f RW(u)5sgn(u2k)sgn(u)sgn(u1k) can be maxi-
mized toac51 by settingk5A2 ln 2 ~Ref. @20#!, which im-
plies that the rate-distortion limitR51 is achieved for the
case ofp51/2 andD50 in the current context. Although
not explicitly pointed out in their paper, the most significa
feature observed for this parameter choice is that
Edwards-Anderson~EA! order parameter (1/N)u^s&u2 van-
ishes to zero, wherê•••& denotes the average over the po
terior distribution giveny andxm51,2, . . . ,M. This implies that
the dynamical variables in the posterior distribution giveny
and xm51,2, . . . ,M is unbiased, and therefore, the entropy
maximized, which meets requirement~I! addressed above
Thus, designing a transfer functionf (u) so as to make the
EA order parameter vanish seems promising as the first
cipline for constructing a good compression code.

However, the reversed-wedge type transfer funct
f RW(u) is not fully satisfactory for the present purpose. Th
06612
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is because this function cannot produce a biased sequ
due to the symmetry,f RW(2u)52 f RW(u), which means
that requirement~II ! provided above would not be satisfie
for pÞ0.5.

Hence, another candidate for which the EA parame
vanishes and the bias of the output can be easily contro
must be found. A function that provides these properties w
once introduced for reducing noise in signal processing, s
as f LA(u)5sgn(k2uuu) @21,22# ~Fig. 2!. Since this locally
activated ~LA ! function has mirror symmetryf LA(2u)
5 f LA(u), both s and 2s provide identical output for any
input, which means that the EA parameter is likely to
zero. Moreover, one can easily control the bias of out
sequences by adjusting the value of the threshold param
k. Therefore, this transfer function looks highly promising
a useful building block for constructing a good compress
code.

In the following two sections, we examine the validity o
the above speculation, analytically and numerically evalu
ing the performance obtained by the locally activated tra
fer function f LA(u).

IV. ANALYTICAL EVALUATION

We here analytically evaluate the typical performance
the proposed compression scheme using the replica met
Our goal is to calculate the minimum permissible avera
distortion D when the compression rateR5N/M is fixed.
The analysis is similar to that of the storage capacity
perceptrons.

Employing the Ising spin expression, the Hamming d
tortion can be represented as

d~y,ỹ~s!!5 (
m51

M

$12Qk~um;ym!%, ~6!

where

Qk~u;1!512Qk~u;21!5H 1, for uuu<k

0, otherwise,
~7!

um5
1

AN
s•xm. ~8!

FIG. 2. Input-output relation off LA(u).
6-3
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Then, for a given original messagey and vectors
xm(51,2, . . . ,M ), the number of dynamical variables,s, which
provide a fixed Hamming distortiond„y,ỹ(s)…5MD (0<D
<1), can be expressed as

N~D !5Tr
s

d~MD2d„y,ỹ~s!!…. ~9!

Since y and xm are randomly generated predetermin
variables, the quenched average of the entropy per bit o
these parameters,

S~D !5
^ lnN~D !&y,x

N
, ~10!

to which the raw entropy per bit, (1/N)lnN(D), becomes
identical for most realizations ofy andxm, is naturally intro-
duced for investigating the typical properties. This can
performed by the replica method (1/N)^ lnN(D)&y,x
5 limn→0(1/nN)ln^N n(D)&y,x , analytically continuing the
expressions of̂N n(D)&y,x obtained for natural numbersn to
non-negative real numbern @23,24#.

Whenn is a natural number,N n(D) can be expanded to
summation over n-replicated systems as N n(D)
y

a
le

th
e

06612
er

e

5Trs1,s2, . . . ,sn)a51
n d(MD2d„y,ỹ(sa)…), where the subscrip

a denotes a replica index. Inserting an identity

15 )
a.b

E
2`

1`

dqabd~sa
•sb2Nqab!

5S 1

2p i D
n(n21)/2E

2`

1`

)
a.b

dqabE
2 i`

1 i`

)
a.b

dq̂ab

3expF (
a.b

q̂ab~sa
•sb2Nqab!G ~11!

into this expression and utilizing the Fourier expression
the d function,

d~MD2d„y,ỹ~sa
…!!5E

2 i`

1 i`dba

2p i

3exp@ba~MD2d„y,ỹ~sa!…!#, ~12!

we can calculate the moment^N n(D)&y,x for natural num-
bersn51,2,3, . . . as
^N n~D !&y,x;E )
a

dbaE )
a.b

dqabE )
a.b

dq̂abexpNFR21lnK E dv duexpS 2
1

2
v tQv1 iv•uD

3 )
a51

n

$e2ba1~12e2ba!Qk~ua ;y!%L
y

1 lnH Tr
$sa%

expS (
a.b

q̂abs
asbD J 2 (

a.b
qabq̂ab1R21D (

a51

n

baG , ~13!
cro-
whereQ is ann3n matrix, of which elements are given b
the parameters$qab% and ^•••&y5(y561(pd(y21)1(1
2p)d(y11))(•••).

In the thermodynamic limitN,M→`, keeping the com-
pression rateR finite, this integral can be evaluated via
saddle point problem with respect to macroscopic variab

qab , q̂ab , andba .
In order to proceed further, a certain ansatz about

symmetry of the replica indices must be assumed. We h
assume the simplest one, that is, the replica symmetric~RS!
ansatz

ba5b, qab5q, q̂ab5q̂ ~; a.b!, ~14!

for which the saddle point expression of Eq.~13! is likely to
hold for any real numbern. Taking the limit n→0 of this
expression, we obtain
s

e
re

S~D !5 lim
n→0

ln^N n~D !&y,x

Nn
5 extr

b,q,q̂

H R21FpE Dt

3 ln$e2b1~12e2b!@H~w1!2H~w2!#%1~12p!

3E Dt ln$e2b1~12e2b!@2H~w1!

1H~w2!11#%G2 q̂~12q!

2

1E Du$ ln~2 coshAq̂u!%1R21bDJ , ~15!

wherew15(2k2Aqt)/A12q, w25(k2Aqt)/A12q, Dx
5(dx/A2p)exp(2x2/2), and H(x)5*x

`Dt; extr$•••% de-
notes the extremization. Under this RS ansatz, the ma
scopic variableq indicates the EA order parameter asq
5(1/N)u^s&u2. The validity of this solution will be examined
later.
6-4
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Since the dynamical variables is discrete in the curren
system, entropy~15! must be non-negative. This indicate
that the achievable limit for a fixed compression rateR and a
transfer functionf LA(u) that is specified by the threshol
parameterk can be characterized by a transition depicted
Fig. 3.

Utilizing the Legendre transformation bF(b)
5minD$R21bD2S(D)%, the free energy F(b) for a fixed in-
verse temperatureb, which is an external parameter an
should be generally distinguished from the variational va
ableb in Eq. ~15!, can be derived fromS(D). This implies
that the distortionD(b) that minimizesR21bD2S(D), and
of which the value is computed fromF(b) as D(b)
5]„bF(b)…/](R21b) can be achieved by randomly draw
ing s from the canonical distributionP(suy,xm);exp

@2bd„y,ỹ(s)…# that is provided by the givenb. For a modest
b, the achieved distortionD(b) is determined as a point fo
which the slope ofS(D) becomes identical toR21b and
S(D).0 @Fig. 3~a!#. As b becomes higher,D(b) moves to
the left, which indicates that the distortion can be reduced
introducing a lower temperature. However, at a critical va
bc , characterized by the conditionS@D(bc)#50 @Fig. 3~b!#,
the number of states that achieveD(bc) which is the typical

FIG. 3. Schematic profile of the entropy~per bit! S(D). ~a! For
a modestb, the achieved distortionD(b) is such a point where
]S(D)/]D5R21b holds. This is realized by the random samplin

from the canonical distributionP(suy,xm);exp@2bd„y,ỹ(s)…#. ~b!
At a critical inverse temperatureb5bc , the entropy forD(bc), the
minimum distortion, vanishes to zero.~c! It is impossible to achieve
any distortion that is smaller thanD(bc), as S(D)50 for D
,D(bc).
06612
n

-

y
e

value of mins$d„y,ỹ(s)…% vanishes to zero. Therefore, forb
.bc , D(b) is fixed to D(bc), and the distortionD
,D(bc) is not achievable@Fig. 3~c!#.

The above argument indicates that the limit of the achi
able distortionD(bc) for a given rateR and a threshold
parameterk in the current scheme can be evaluated fro
conditions

D~b!5
]„bF~b!…

]~R21b!
, ~16!

S„D~b!…50, ~17!

being parametrized by the inverse temperatureb.
Due to the mirror symmetryf LA(2u)5 f LA(u), q5q̂

50 becomes the saddle point solution for the extremizat
problem~15! as we speculated in the preceding section, a
no other solution is discovered. Insertingq5q̂50 into the
right-hand side of Eq.~15! and employing the Legendr
transformation, the free energy is obtained as

bF~b!52 ln 22R21@p ln$e2b1~12e2b!Ak%

1~12p!ln$e2b1~12e2b!~12Ak!%#, ~18!

whereAk5122H(k), which means that Eqs.~16! and ~17!
yield

D5p
e2b2e2bAk

e2b1~12e2b!Ak

1~12p!
e2b2e2b~12Ak!

e2b1~12e2b!~12Ak!
,

~19!

and

R52@p log2$e
2b1~12e2b!Ak%1~12p!

3 log2$e
2b1~12e2b!~12Ak!%#

2
b

ln2 F p
e2b2e2bAk

e2b1~12e2b!Ak

1~12p!
e2b2e2b~12Ak!

e2b1~12e2b!~12Ak!
G , ~20!

respectively.
The rate-distortion functionR(D) represents the optima

performance that can be achieved by appropriately tuning
scheme of compression. This means thatR(D) can be evalu-
ated as the convex hull of a region in theD-R plane defined
by Eqs.~19! and ~20! by varying the inverse temperatureb
and the threshold parameterk ~or Ak). Minimizing R for a
fixed D, one can show that the relations

e2b5
D

12D
, ~21!

e2b1~12e2b!Ak5
p

12D
, ~22!
6-5
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HOSAKA, KABASHIMA, AND NISHIMORI PHYSICAL REVIEW E 66, 066126 ~2002!
are satisfied at the convex hull, which offers the optim
choice of parametersb andk as functions of a given permis
sible distortionD and a biasp. Plugging these into Eq.~20!,
we obtain

R5RRS~D !52p log2p2~12p!log2~12p!1D log2D

1~12D !log2~12D !5H2~p!2H2~D !, ~23!

which is identical to the rate-distortion function for un
formly biased binary sources~4!.

The results obtained thus far indicate that the propo
scheme achieves the rate-distortion limit when the thresh
parameterk is optimally adjusted. However, since the calc
lation is based on the RS ansatz, we must confirm the va
ity of assuming this specific solution. We therefore examin
two possible scenarios for the breakdown of the RS solut

The first scenario is that the local stability against t
fluctuations for disturbing the replica symmetry is broke
which is often termed the Almeida-Thouless~AT! instability
@25#, and can be examined by evaluating the excitation of
free energy around the RS solution. As the current RS s
tion can be simply expressed asq5q̂50, the condition for
this solution to be stable can be analytically obtained as

R.RAT~D !5
1

p~12p! H 2k~122D !

A2p
e2(k2/2)J 2

. ~24!

In most cases, the RS solution satisfies the above cond
and, therefore, does not exhibit the AT instability. Howev
we found numerically that for relatively high values of di
tortion 0.336&D,0.50, RRS(D) can become slightly
smaller thanRAT(D) for a very narrow parameter region
0.499&p<0.5, which indicates the necessity of introduci
the replica symmetry breaking~RSB! solutions. This is also
supported analytically by the fact that the inequal
RAT(D);2.943(p2D)2>RRS(D);2.893(p2D)2 holds
for p50.5 in the vicinity ofD&p. Nevertheless, this insta
bility may not be serious in practice, because the area of
region RRS(D),R,RAT(D), where the RS solution be
comes unstable, is extremely small, as indicated by Fig. 5~a!.

The other scenario is the coexistence of an RSB solu
that is thermodynamically dominant while the RS solution
locally stable. In order to examine this possibility, we solv
the saddle point problem assuming the one-step RSB~1RSB!
ansatz in several cases for which the RS solution is loc
stable. However, no 1RSB solution was discovered forR
>RRS(D). Therefore, we concluded that this scenario ne
not be taken into account in the current system.

These insubstantial roles of RSB may seem somew
surprising since significant RSB effects above the stor
capacity have been reported in the research of percept
with continuous couplings@19,21#. However, this may be
explained by the fact that, in most cases, RSB solutions
Ising couplings can be expressed by the RS solutions ad
ing temperature appropriately, even if nonmonotonic trans
functions are used@17,22#.
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V. NUMERICAL VALIDATION

Although the analysis in the preceding section theor
cally indicates that the proposed scheme is likely to exhib
good compression performance, it is still important to co
firm it by experiments. Therefore, we have performed n
merical simulations implementing the proposed scheme
systems of finite size.

In these experiments, an exhaustive search was perfor
in order to minimize the distortiond„y,ỹ(s)… so as to com-
press a given messagey into s, which implies that imple-
menting the current scheme in a large system is diffic
Therefore, validation was performed by extrapolating the
merically obtained data, changing the system size fromN
54 to N520.

Figure 4 shows the average distortions obtained fr
5000;10 000 experiments for~a! unbiased (p50.5) and~b!
biased (p50.2) messages, varying the system sizeN and the
compression rateR(50.05;1.0). For eachR, the threshold
parameterk is tuned to the value determined using Eqs.~21!
and ~22!, and the rate-distortion functionR5R(D) in order
to optimize the performance.

These data indicate that the finite size effect is relativ
large in the present system, which is similar to the case of
storage capacity problem@26#, and do not necessarily see
consistent with the theoretical prediction obtained in the p
ceding section. However, the extrapolated values obtai

FIG. 4. The averages of the achieved distortions are plotted
functions of 1/N for ~a! p50.5 ~unbiased! and ~b! p50.2 ~biased!
messages changing the compression rateR. The plots are obtained
from 5000;10 000 experiments forN54;20, minimizing the dis-

tortion d„y,ỹ(s)… by means of exhaustive search. Each set of pl
corresponds toR50.05 (p50.5 only!, 0.1, 0.2, . . . , 1.0, from the
top.
6-6
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STATISTICAL MECHANICS OF LOSSY DATA . . . PHYSICAL REVIEW E66, 066126 ~2002!
from the quadratic fitting with respect to 1/N are highly con-
sistent with curves of the rate-distortion function@Figs. 5~a!
and 5~b!#, including one point in the region where the A
stability is broken@inset of Fig. 5~a!#, which strongly sup-
ports the validity and efficacy of our calculation based on
RS ansatz.

VI. SUMMARY AND DISCUSSION

We have investigated a lossy data compression schem
uniformly biased Boolean messages employing a percept

FIG. 5. The limits of the achievable distortion expected forN
→` are plotted vs the code rateR for ~a! p50.5 ~unbiased! and~b!
p50.2 ~biased! messages. The plots are obtained by extrapola
the numerically obtained data for systems ofN54 –20 shown in
Fig. 4. The full and dashed curves represent the rate-distortion f
tions and the AT lines, respectively. Although the AT stability
broken forD*0.336 for p50.5 @inset of ~a!#, the numerical data
are highly consistent with the RS solution that corresponds to
rate-distortion function.
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e

of
n,

of which the transfer function is nonmonotonic. Designi
the transfer function based on the properties required
good compression codes, we have constructed a scheme
saturates the rate-distortion function that represents the o
mal performance in the framework of lossy compression
most cases.

It is known that a nonmonotonic single-layer perceptr
can be regarded as equivalent to certain types of multilaye
networks, as in the case of parity and committee machin
Although tuning the inputoutput relation in multilayered ne
works would be more complicated, employing such devic
might be useful in practice because several heuristic a
rithms that could be used for encoding in the present con
have been proposed and investigated@27,28#.

In real world problems, the redundancy of informatio
sources is not necessarily represented as a uniform bias
rather is often given as nontrivial correlations among co
ponents of a message. Although it is just unfortunate that
direct employment of the current method may not show
good performance in such cases, the locally activated tra
fer function f LA(u) that we have introduced herein cou
serve as a useful building block to be used in conjunct
with a set of connection vectorsxm51,2, . . . ,M that are appro-
priately correlated for approximately expressing the giv
information source, because by using this function, we
easily control the input-output relation suppressing the b
of the compressed message to zero, no matter how the
dundancy is represented.

Finally, although we have confirmed that our method e
hibits a good performance when executed optimally in
large system, the computational cost for compressing a m
sage may render the proposed method impractical. O
promising approach for resolving this difficulty is to emplo
efficient approximation algorithms such as various meth
of the Monte Carlo sampling@29# and of the mean field
approximation@30#. Another possibility is to reduce the finit
size effect by further tuning the profile of the transfer fun
tion. Investigation of these subjects is currently under wa
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